Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Med Virol ; 95(5): e28786, 2023 05.
Article in English | MEDLINE | ID: covidwho-2323697

ABSTRACT

The aim of this study was to analyze whether the coronavirus disease 2019 (COVID-19) vaccine reduces mortality in patients with moderate or severe COVID-19 disease requiring oxygen therapy. A retrospective cohort study, with data from 148 hospitals in both Spain (111 hospitals) and Argentina (37 hospitals), was conducted. We evaluated hospitalized patients for COVID-19 older than 18 years with oxygen requirements. Vaccine protection against death was assessed through a multivariable logistic regression and propensity score matching. We also performed a subgroup analysis according to vaccine type. The adjusted model was used to determine the population attributable risk. Between January 2020 and May 2022, we evaluated 21,479 COVID-19 hospitalized patients with oxygen requirements. Of these, 338 (1.5%) patients received a single dose of the COVID-19 vaccine and 379 (1.8%) were fully vaccinated. In vaccinated patients, mortality was 20.9% (95% confidence interval [CI]: 17.9-24), compared to 19.5% (95% CI: 19-20) in unvaccinated patients, resulting in a crude odds ratio (OR) of 1.07 (95% CI: 0.89-1.29; p = 0.41). However, after considering the multiple comorbidities in the vaccinated group, the adjusted OR was 0.73 (95% CI: 0.56-0.95; p = 0.02) with a population attributable risk reduction of 4.3% (95% CI: 1-5). The higher risk reduction for mortality was with messenger RNA (mRNA) BNT162b2 (Pfizer) (OR 0.37; 95% CI: 0.23-0.59; p < 0.01), ChAdOx1 nCoV-19 (AstraZeneca) (OR 0.42; 95% CI: 0.20-0.86; p = 0.02), and mRNA-1273 (Moderna) (OR 0.68; 95% CI: 0.41-1.12; p = 0.13), and lower with Gam-COVID-Vac (Sputnik) (OR 0.93; 95% CI: 0.6-1.45; p = 0.76). COVID-19 vaccines significantly reduce the probability of death in patients suffering from a moderate or severe disease (oxygen therapy).


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , Oxygen , ChAdOx1 nCoV-19 , BNT162 Vaccine , Cohort Studies , Retrospective Studies , COVID-19/prevention & control , RNA, Messenger
2.
EClinicalMedicine ; 58: 101932, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2305366

ABSTRACT

Background: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. Methods: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. Findings: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. Interpretation: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. Funding: None.

3.
Enfermedades infecciosas y microbiologia clinica (English ed) ; 41(3):149-154, 2023.
Article in English | EuropePMC | ID: covidwho-2277326

ABSTRACT

Background The COVID-19 pandemic has affected the care of patients with other diseases. Difficulty in access to healthcare during these months has been especially relevant for persons with HIV infection (PWH). This study therefore sought to ascertain the clinical outcomes and effectiveness of the measures implemented among PWH in a region with one of the highest incidence rates in Europe. Methods Retrospective, observational, pre-post intervention study to compare the outcomes of PWH attended at a high-complexity healthcare hospital from March to October 2020 and during the same months across the period 2016–2019. The intervention consisted of home drug deliveries and preferential use of non face-to-face consultations. The effectiveness of the measures implemented was determined by reference to the number of emergency visits, hospitalisations, mortality rate, and percentage of PWH with viral load >50 copies, before and after the two pandemic waves. Results A total of 2760 PWH were attended from January 2016 to October 2020. During the pandemic, there was a monthly mean of 106.87 telephone consultations and 2075 home deliveries of medical drugs dispensed to ambulatory patients. No statistically significant differences were found between the rate of admission of patients with COVID-HIV co-infection and that of the remaining patients (1172.76 admissions/100,000 population vs. 1424.29, p = 0.401) or in mortality (11.54% vs. 12.96%, p = 0.939). The percentage of PWH with viral load >50 copies was similar before and after the pandemic (1.20% pre-pandemic vs. 0.51% in 2020, p = 0.078). Conclusion Our results show that the strategies implemented during the first 8 months of the pandemic prevented any deterioration in the control and follow-up parameters routinely used on PWH. Furthermore, they contribute to the debate about how telemedicine and telepharmacy can fit into future healthcare models.

4.
Enferm Infecc Microbiol Clin (Engl Ed) ; 2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-2277328

ABSTRACT

BACKGROUND: The COVID-19 pandemic has affected the care of patients with other diseases. Difficulty in access to healthcare during these months has been especially relevant for persons with HIV infection (PWH). This study therefore sought to ascertain the clinical outcomes and effectiveness of the measures implemented among PWH in a region with one of the highest incidence rates in Europe. METHODS: Retrospective, observational, pre-post intervention study to compare the outcomes of PWH attended at a high-complexity healthcare hospital from March to October 2020 and during the same months across the period 2016-2019. The intervention consisted of home drug deliveries and preferential use of non face-to-face consultations. The effectiveness of the measures implemented was determined by reference to the number of emergency visits, hospitalisations, mortality rate, and percentage of PWH with viral load >50 copies, before and after the two pandemic waves. RESULTS: A total of 2,760 PWH were attended from January 2016 to October 2020. During the pandemic, there was a monthly mean of 106.87 telephone consultations and 2,075 home deliveries of medical drugs dispensed to ambulatory patients. No statistically significant differences were found between the rate of admission of patients with COVID-HIV co-infection and that of the remaining patients (1,172.76 admissions/100,000 population vs. 1,424.29, p = 0.401) or in mortality (11.54% vs. 12.96%, p = 0.939). The percentage of PWH with viral load >50 copies was similar before and after the pandemic (1.20% pre-pandemic vs. 0.51% in 2020, p = 0.078). CONCLUSION: Our results show that the strategies implemented during the first 8 months of the pandemic prevented any deterioration in the control and follow-up parameters routinely used on PWH. Furthermore, they contribute to the debate about how telemedicine and telepharmacy can fit into future healthcare models.


Introducción: La pandemia causada por el SARS-CoV-2 ha afectado a la atención de pacientes con otras enfermedades. La dificultad en el acceso a la asistencia sanitaria durante estos meses es especialmente relevante en las personas con infección por VIH (PWH). El objetivo del estudio fue conocer los resultados clínicos y la efectividad de las medidas implementadas en PWH en una de las regiones con mayor incidencia de Europa.Métodos: Estudio observacional retrospectivo, pre-post intervención, comparando los resultados de PWH atendidos en un hospital de alta complejidad entre marzo-octubre de 2020 y el mismo periodo de 2016 a 2019. La intervención consistió en el envío a domicilio de medicamentos y la realización preferente de consultas no presenciales. La efectividad de las medidas implementadas se determinó por el número de visitas a Urgencias, hospitalizaciones, mortalidad y porcentaje de PWH con carga viral > 50 copias antes y después de dos olas pandémicas.Resultados: Se atendieron 2.760 PWH entre enero de 2016 y octubre de 2020. Durante la pandemia se realizaron una media mensual de 106,87 consultas telefónicas y 2.075 envíos a domicilio de medicamentos de dispensación ambulatoria. No se encontraron diferencias estadísticamente significativas en la frecuentación de pacientes con co-infección COVID-VIH respecto al resto (1.172,76 ingresos/100.000 habitantes vs. 1.424,29, p = 0,401), ni en su mortalidad (11,54% vs. 12,96%, p = 0,939). El porcentaje de PWH con carga viral > 50 copias fue similar antes y después de la pandemia (1,20% pre-pandemia vs. 0,51% en 2020, p = 0,078).Conclusión: Nuestros resultados revelan que las estrategias implementadas durante los 8 primeros meses de pandemia han evitado el deterioro en parámetros de control y seguimiento empleados habitualmente en PWH. Además, contribuyen a la reflexión sobre el encaje de la telemedicina y telefarmacia en modelos asistenciales futuros.

5.
Int J Epidemiol ; 52(2): 355-376, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2265655

ABSTRACT

BACKGROUND: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. METHODS: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). RESULTS: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. CONCLUSIONS: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death.


Subject(s)
COVID-19 , Humans , Male , Child , Middle Aged , COVID-19/therapy , SARS-CoV-2 , Intensive Care Units , Proportional Hazards Models , Risk Factors , Hospitalization
6.
Enferm Infecc Microbiol Clin (Engl Ed) ; 41(3): 149-154, 2023 03.
Article in English | MEDLINE | ID: covidwho-2277327

ABSTRACT

BACKGROUND: The COVID-19 pandemic has affected the care of patients with other diseases. Difficulty in access to healthcare during these months has been especially relevant for persons with HIV infection (PWH). This study therefore sought to ascertain the clinical outcomes and effectiveness of the measures implemented among PWH in a region with one of the highest incidence rates in Europe. METHODS: Retrospective, observational, pre-post intervention study to compare the outcomes of PWH attended at a high-complexity healthcare hospital from March to October 2020 and during the same months across the period 2016-2019. The intervention consisted of home drug deliveries and preferential use of non face-to-face consultations. The effectiveness of the measures implemented was determined by reference to the number of emergency visits, hospitalisations, mortality rate, and percentage of PWH with viral load >50copies, before and after the two pandemic waves. RESULTS: A total of 2760 PWH were attended from January 2016 to October 2020. During the pandemic, there was a monthly mean of 106.87 telephone consultations and 2075 home deliveries of medical drugs dispensed to ambulatory patients. No statistically significant differences were found between the rate of admission of patients with COVID-HIV co-infection and that of the remaining patients (1172.76 admissions/100,000 population vs. 1424.29, p=0.401) or in mortality (11.54% vs. 12.96%, p=0.939). The percentage of PWH with viral load >50copies was similar before and after the pandemic (1.20% pre-pandemic vs. 0.51% in 2020, p=0.078). CONCLUSION: Our results show that the strategies implemented during the first 8 months of the pandemic prevented any deterioration in the control and follow-up parameters routinely used on PWH. Furthermore, they contribute to the debate about how telemedicine and telepharmacy can fit into future healthcare models.


Subject(s)
COVID-19 , HIV Infections , Humans , Delivery of Health Care , Pandemics , Retrospective Studies , Tertiary Care Centers
7.
EClinicalMedicine ; 55: 101724, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2104824

ABSTRACT

Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking. Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1-365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021. Findings: Advanced age (HR 2.77, 95%CI 2.53-3.04, p < 0.0001), severe COVID-19 (HR 2.91, 95%CI 2.03-4.17, p < 0.0001), severe AKI (KDIGO stage 3: HR 4.22, 95%CI 3.55-5.00, p < 0.0001), and ischemic heart disease (HR 1.26, 95%CI 1.14-1.39, p < 0.0001) were associated with worse mortality outcomes. AKI severity (KDIGO stage 3: HR 0.41, 95%CI 0.37-0.46, p < 0.0001) was associated with worse kidney function recovery, whereas remdesivir use (HR 1.34, 95%CI 1.17-1.54, p < 0.0001) was associated with better kidney function recovery. In a subset of patients without chronic kidney disease, advanced age (HR 1.38, 95%CI 1.20-1.58, p < 0.0001), male sex (HR 1.67, 95%CI 1.45-1.93, p < 0.0001), severe AKI (KDIGO stage 3: HR 11.68, 95%CI 9.80-13.91, p < 0.0001), and hypertension (HR 1.22, 95%CI 1.10-1.36, p = 0.0002) were associated with post-AKI kidney function impairment. Furthermore, patients with COVID-19-associated AKI had significant and persistent elevations of baseline serum creatinine 125% or more at 180 days (RR 1.49, 95%CI 1.32-1.67) and 365 days (RR 1.54, 95%CI 1.21-1.96) compared to COVID-19 patients with no AKI. Interpretation: COVID-19-associated AKI was associated with higher mortality, and severe COVID-19-associated AKI was associated with worse long-term post-AKI kidney function recovery. Funding: Authors are supported by various funders, with full details stated in the acknowledgement section.

8.
Methods Inf Med ; 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2062350

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, several methodologies were designed for obtaining electronic health record (EHR)-derived datasets for research. These processes are often based on black boxes, on which clinical researchers are unaware of how the data were recorded, extracted, and transformed. In order to solve this, it is essential that extract, transform, and load (ETL) processes are based on transparent, homogeneous, and formal methodologies, making them understandable, reproducible, and auditable. OBJECTIVES: This study aims to design and implement a methodology, according with FAIR Principles, for building ETL processes (focused on data extraction, selection, and transformation) for EHR reuse in a transparent and flexible manner, applicable to any clinical condition and health care organization. METHODS: The proposed methodology comprises four stages: (1) analysis of secondary use models and identification of data operations, based on internationally used clinical repositories, case report forms, and aggregated datasets; (2) modeling and formalization of data operations, through the paradigm of the Detailed Clinical Models; (3) agnostic development of data operations, selecting SQL and R as programming languages; and (4) automation of the ETL instantiation, building a formal configuration file with XML. RESULTS: First, four international projects were analyzed to identify 17 operations, necessary to obtain datasets according to the specifications of these projects from the EHR. With this, each of the data operations was formalized, using the ISO 13606 reference model, specifying the valid data types as arguments, inputs and outputs, and their cardinality. Then, an agnostic catalog of data was developed through data-oriented programming languages previously selected. Finally, an automated ETL instantiation process was built from an ETL configuration file formally defined. CONCLUSIONS: This study has provided a transparent and flexible solution to the difficulty of making the processes for obtaining EHR-derived data for secondary use understandable, auditable, and reproducible. Moreover, the abstraction carried out in this study means that any previous EHR reuse methodology can incorporate these results into them.

9.
NPJ Digit Med ; 5(1): 74, 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1890276

ABSTRACT

Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach.

10.
Stud Health Technol Inform ; 294: 287-291, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1865419

ABSTRACT

Reuse of Electronic Health Records (EHRs) for specific diseases such as COVID-19 requires data to be recorded and persisted according to international standards. Since the beginning of the COVID-19 pandemic, Hospital Universitario 12 de Octubre (H12O) evolved its EHRs: it identified, modeled and standardized the concepts related to this new disease in an agile, flexible and staged way. Thus, data from more than 200,000 COVID-19 cases were extracted, transformed, and loaded into an i2b2 repository. This effort allowed H12O to share data with worldwide networks such as the TriNetX platform and the 4CE Consortium.


Subject(s)
COVID-19 , COVID-19/epidemiology , Electronic Health Records , Humans , Pandemics
11.
Stud Health Technol Inform ; 294: 164-168, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1865418

ABSTRACT

One approach to verifying the quality of research data obtained from EHRs is auditing how complete and correct the data are in comparison with those collected by manual and controlled methods. This study analyzed data quality of an EHR-derived dataset for COVID-19 research, obtained during the pandemic at Hospital Universitario 12 de Octubre. Data were extracted from EHRs and a manually collected research database, and then transformed into the ISARIC-WHO COVID-19 CRF model. Subsequently, a data analysis was performed, comparing both sources through this convergence model. More concepts and records were obtained from EHRs, and PPV (95% CI) was above 85% in most sections. In future studies, a more detailed analysis of data quality will be carried out.


Subject(s)
COVID-19 , Data Accuracy , Databases, Factual , Electronic Health Records , Humans , Pandemics
12.
Elife ; 112022 05 17.
Article in English | MEDLINE | ID: covidwho-1847655

ABSTRACT

New SARS-CoV-2 variants, breakthrough infections, waning immunity, and sub-optimal vaccination rates account for surges of hospitalizations and deaths. There is an urgent need for clinically valuable and generalizable triage tools assisting the allocation of hospital resources, particularly in resource-limited countries. We developed and validate CODOP, a machine learning-based tool for predicting the clinical outcome of hospitalized COVID-19 patients. CODOP was trained, tested and validated with six cohorts encompassing 29223 COVID-19 patients from more than 150 hospitals in Spain, the USA and Latin America during 2020-22. CODOP uses 12 clinical parameters commonly measured at hospital admission for reaching high discriminative ability up to 9 days before clinical resolution (AUROC: 0·90-0·96), it is well calibrated, and it enables an effective dynamic risk stratification during hospitalization. Furthermore, CODOP maintains its predictive ability independently of the virus variant and the vaccination status. To reckon with the fluctuating pressure levels in hospitals during the pandemic, we offer two online CODOP calculators, suited for undertriage or overtriage scenarios, validated with a cohort of patients from 42 hospitals in three Latin American countries (78-100% sensitivity and 89-97% specificity). The performance of CODOP in heterogeneous and geographically disperse patient cohorts and the easiness of use strongly suggest its clinical utility, particularly in resource-limited countries.


While COVID-19 vaccines have saved millions of lives, new variants, waxing immunity, unequal rollout and relaxation of mitigation strategies mean that the pandemic will keep on sending shockwaves across healthcare systems. In this context, it is crucial to equip clinicians with tools to triage COVID-19 patients and forecast who will experience the worst forms of the disease. Prediction models based on artificial intelligence could help in this effort, but the task is not straightforward. Indeed, the pandemic is defined by ever-changing factors which artificial intelligence needs to cope with. To be useful in the clinic, a prediction model should make accurate prediction regardless of hospital location, viral variants or vaccination and immunity statuses. It should also be able to adapt its output to the level of resources available in a hospital at any given time. Finally, these tools need to seamlessly integrate into clinical workflows to not burden clinicians. In response, Klén et al. built CODOP, a freely available prediction algorithm that calculates the death risk of patients hospitalized with COVID-19 (https://gomezvarelalab.em.mpg.de/codop/). This model was designed based on biochemical data from routine blood analyses of COVID-19 patients. Crucially, the dataset included 30,000 individuals from 150 hospitals in Spain, the United States, Honduras, Bolivia and Argentina, sampled between March 2020 and February 2022 and carrying most of the main COVID-19 variants (from the original Wuhan version to Omicron). CODOP can predict the death or survival of hospitalized patients with high accuracy up to nine days before the clinical outcome occurs. These forecasting abilities are preserved independently of vaccination status or viral variant. The next step is to tailor the model to the current pandemic situation, which features increasing numbers of infected people as well as accumulating immune protection in the overall population. Further development will refine CODOP so that the algorithm can detect who will need hospitalisation in the next 24 hours, and who will need admission in intensive care in the next two days. Equipping primary care settings and hospitals with these tools will help to restore previous standards of health care during the upcoming waves of infections, particularly in countries with limited resources.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitalization , Hospitals , Humans , Machine Learning , Retrospective Studies
13.
Blood ; 136(Supplement 1):43-43, 2020.
Article in English | PMC | ID: covidwho-1339014

ABSTRACT

IntroductionHyperinflammatory response induced by the SARS-CoV19 (CV) coronavirus is the main cause of morbidity and mortality. Numerous studies have pointed-out the main role of monocyte activation. In addition neutrophils alterations appear to differ pathophysiologically from the changes that occur in Influenza Virus (IV) infection. Due to the overlap of symptoms between these two entities, the search of analytical markers that help in early diagnostic orientation is considered of crucial importance. Changes in cell function, phenotype, and morphology in circulating leukocytes can be translated into numerical data obtained from an automated analyzer. The objective of our study is to generate an Artificial Intelligence Model from conventional hematological blood count parameters which be able to discriminate between CV and IV infection, in a fast and efficient maner.MethodsThis is a retrospective single-center study, performed between January-April 2020. The patients (n = 816) were divided into two groups: Patients who came for suspected COVID and had a positive RT-PCR (n = 408) and patients with a diagnosis of influenza confirmed by RT-PCR (n = 408). The database was divided into two random subgroups (n = 654) to train the model and another (n = 162) to validate it.The first hemogram on admission to the Emergency Department of these patients was performed on a Beckman-Coulter® DXH-900 equipment. Total white blood cells, absolute neutrophils, absolute lymphocytes, absolute monocytes, monocyte distribution wide (MDW) and Cell Morphological Data (CMDs) based on the impedance, conductivity and light scattering of these leukocyte subpopulations have been used to construct the model.Five algorithms have been evaluated using the R studio Software and the Caret (Classification and Regression Training) package: Linear Discriminant Analysis (LDA), K-Nearest Neighbor (kNN), Neural Networks (NN), Support Vector Machines (SVM) and Recursive partitioning (Rpart).ResultsThe evaluation of the different models was based on the comparison of the efficacy obtained through a cross validation (10x). It was decided to choose the SVM model by presenting a median of the area under the ROC curve of 0,841. No data preprocessing was performed, and the parameters chosen for the model were: sigma = 0,014, C = 1 and Number of Support Vectors = 458.Parameters with greater importance (>80%) in the model, were CMDs based on Neutrophil Light Scattering (SDLNE, SDLAN, SDMNE and MNLNE).The analysis of results was performed using a confusion matrix, where the model predicts the diagnosis of each patient in the validation subgroup (Table 2). A ROC curve with an area of 0,892 was obtained, with a sensitivity and specificity of 80% and 85%, respectively (Fig 1).ConclusionsThe creation of prediction algorithms from hemogram parameters allow to discriminate between COVID 19 infection and influenza A and B with a high specificity and sensitivity in a fast way. This could be a great advance for the early diagnostic orientation and guide clinical decisions as soon as possible with the consequent clinical benefit.

14.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1088863

ABSTRACT

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Subject(s)
COVID-19/epidemiology , Data Collection/methods , Electronic Health Records , Data Collection/standards , Humans , Peer Review, Research/standards , Publishing/standards , Reproducibility of Results , SARS-CoV-2/isolation & purification
15.
J Biomed Inform ; 115: 103697, 2021 03.
Article in English | MEDLINE | ID: covidwho-1062445

ABSTRACT

BACKGROUND: COVID-19 ranks as the single largest health incident worldwide in decades. In such a scenario, electronic health records (EHRs) should provide a timely response to healthcare needs and to data uses that go beyond direct medical care and are known as secondary uses, which include biomedical research. However, it is usual for each data analysis initiative to define its own information model in line with its requirements. These specifications share clinical concepts, but differ in format and recording criteria, something that creates data entry redundancy in multiple electronic data capture systems (EDCs) with the consequent investment of effort and time by the organization. OBJECTIVE: This study sought to design and implement a flexible methodology based on detailed clinical models (DCM), which would enable EHRs generated in a tertiary hospital to be effectively reused without loss of meaning and within a short time. MATERIAL AND METHODS: The proposed methodology comprises four stages: (1) specification of an initial set of relevant variables for COVID-19; (2) modeling and formalization of clinical concepts using ISO 13606 standard and SNOMED CT and LOINC terminologies; (3) definition of transformation rules to generate secondary use models from standardized EHRs and development of them using R language; and (4) implementation and validation of the methodology through the generation of the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC-WHO) COVID-19 case report form. This process has been implemented into a 1300-bed tertiary Hospital for a cohort of 4489 patients hospitalized from 25 February 2020 to 10 September 2020. RESULTS: An initial and expandable set of relevant concepts for COVID-19 was identified, modeled and formalized using ISO-13606 standard and SNOMED CT and LOINC terminologies. Similarly, an algorithm was designed and implemented with R and then applied to process EHRs in accordance with standardized concepts, transforming them into secondary use models. Lastly, these resources were applied to obtain a data extract conforming to the ISARIC-WHO COVID-19 case report form, without requiring manual data collection. The methodology allowed obtaining the observation domain of this model with a coverage of over 85% of patients in the majority of concepts. CONCLUSION: This study has furnished a solution to the difficulty of rapidly and efficiently obtaining EHR-derived data for secondary use in COVID-19, capable of adapting to changes in data specifications and applicable to other organizations and other health conditions. The conclusion to be drawn from this initial validation is that this DCM-based methodology allows the effective reuse of EHRs generated in a tertiary Hospital during COVID-19 pandemic, with no additional effort or time for the organization and with a greater data scope than that yielded by conventional manual data collection process in ad-hoc EDCs.


Subject(s)
COVID-19/pathology , Datasets as Topic , Electronic Health Records , Algorithms , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Humans , Logical Observation Identifiers Names and Codes , SARS-CoV-2/isolation & purification , Systematized Nomenclature of Medicine
SELECTION OF CITATIONS
SEARCH DETAIL